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2Linné Flow Centre, KTH Mechanics, S-100 44 Stockholm, Sweden

(Received 2 December 2008; revised 27 November 2009; accepted 3 December 2009;

first published online 22 March 2010)

The two-dimensional flow around a rotating circular cylinder is studied at Re = 100.
The instability mechanisms for the first and second shedding modes are analysed. The
region in the flow with a role of ‘wavemaker’ in the excitation of the global instability is
identified by considering the structural sensitivity of the unstable mode. This approach
is compared with the analysis of the perturbation kinetic energy production, a classic
approach in linear stability analysis. Multiple steady-state solutions are found at high
rotation rates, explaining the quenching of the second shedding mode. Turning points
in phase space are associated with the movement of the flow stagnation point. In
addition, a method to examine which structural variation of the base flow has the
largest impact on the instability features is proposed. This has relevant implications
for the passive control of instabilities. Finally, numerical simulations of the flow are
performed to verify that the structural sensitivity analysis is able to provide correct
indications on where to position passive control devices, e.g. small obstacles, in order
to suppress the shedding modes.

1. Introduction
The two-dimensional flow past a circular cylinder is one of the basic flow

configurations which have long received great attention from fluid dynamicists. It
is often used as a prototype to investigate vortex formation and the wake dynamics
past a bluff body. Less studied is the case of the flow past a rotating circular cylinder.
Investigations of the latter flow have, in addition, implications for flow control using
wall motion owing to the reduced/increased relative velocity between body and free
stream as well as the injection of additional momentum into the boundary layer. In
the case of bodies of complex geometry, separate rotating circular cylinders can be
used to control vortex shedding (see e.g. Modi 1997; Gad-El-Hak 2000).

As reviewed below, when increasing the rotational speed of the cylinder, two
distinct instability modes appear in the flow. The aim of this work is therefore to
analyse the instability mechanisms for the first and second shedding modes behind a
rotating circular cylinder. The region in the flow with a role of ‘wavemaker’ in the
excitation of the global instability is identified by considering the structural sensitivity
of the unstable mode as introduced by Giannetti & Luchini (2007). This approach is
compared with the analysis of the perturbation kinetic energy production, a classic
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approach in linear stability analysis (Drazin & Reid 1981; Huerre & Rossi 1998).
Furthermore, we investigate which structural variation of the base flow has the
largest impact on the instability features. This may suggest how to control the vortex
shedding by means of small obstacles or passive devices (see e.g. the experimental
work by Strykowski & Sreenivasan 1990). From a stability point of view, the analysis
performed here extends the tools currently available for the analysis of complex
flows. The need for global modes to account for spatially inhomogeneous flows is
discussed for example by Theofilis (2003) and Chomaz (2005). Here, we show how
the combination of direct and adjoint global modes provides relevant knowledge
about the structural sensitivity of the instability by identifying the core region for the
instability mechanism and the sensitivity to steady variations of the underlying base
flow, thus providing accurate indications for passive control strategies. For recent
reviews on control of flow over a bluff body, the reader is referred to Collis et al.
(2004) and Choi, Jeon & Kim (2008).

1.1. Sensitivity of instability modes to base-flow variations

A theoretical formulation for analysing the stabilization of wake flows by passive
devices was first proposed by Hill (1992), a work probably overlooked. Few years
later, Bottaro, Corbett & Luchini (2003) examined the sensitivity of eigenvalues to
modifications of the base flow. The worst case, i.e. the change in base flow with the
most destabilizing effect on the eigenvalues, is found using variational techniques
for the plane Couette flow. Such base-flow variations are interpreted as differences
between the laboratory flow and its ideal, theoretical counterpart. Later studies
considered transition to turbulence initiated by base-flow defects (see e.g. Gavarini,
Bottaro & Nieuwstadt 2004). Chomaz (2005) shows how small perturbations of
non-normal operators may displace the eigenvalues in a significant manner. These
perturbations will have a larger impact if they occur in the overlap region between the
adjoint and direct global modes. Implications for feedback and closed-loop control
are also discussed; for each unstable mode, the influence of the control is limited
by its adjoint mode (see also Lauga & Bewley 2004). The analysis of structural
sensitivity of the instability past a cylinder by Giannetti & Luchini (2007) is extended
by Luchini, Giannetti & Pralits (2008, 2009). In the latter study, the effect of base-flow
variations on the limit cycle at supercritical Reynolds numbers and on the eigenvalue
drift is considered. These authors show that the sensitivity to base-flow modification
can become significantly larger than that to perturbations. More recently, Marquet,
Sipp & Jacquin (2008a) have developed sensitivity analyses that aim to predict
variations of the eigenvalue induced by arbitrary base-flow modifications. These
authors examine in particular the sensitivity to a steady force for the cylinder flow
and obtain indications of the regions in the flow where base-flow modifications have
a stabilizing effect. The results depend on the product of direct and adjoint modes.
Marquet et al. (2008b) modelled the presence of a small control cylinder by a local
force and developed a multiple scale analysis to consider the sensitivity with respect
to the steady and unsteady components of the force. This is, in other words, the
force acting on the unsteady shedding mode and on the steady base flow. Following
Luchini et al. (2009), a very similar approach is used here for the case of a rotating
cylinder when considering the total flow sensitivity as the sum of the sensitivity to
perturbations and base-flow modifications.

1.2. Flow past a rotating cylinder

Kang, Choi & Lee (1999) showed via numerical simulations that vortex shedding
behind a rotating cylinder disappears when increasing the value of the ratio between
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the rotational velocity of the cylinder wall and the oncoming free stream α to
about 2. Furthermore, they observed that the rotation of the cylinder does not
significantly alter the shedding frequency in the unstable range of rotation rates.
Stojković, Breuer & Durst (2002) examined the flow at higher rotation rates and
Reynolds number Re =100, where the Reynolds number is based on the dimensional
free-stream velocity U�

∞, the cylinder diameter D� and the kinematic viscosity ν�.
These authors first documented the appearance of a second shedding mode in a
narrow interval 4.85 � α � 5.15; this mode has a shedding frequency much lower than
that of the classic von Kármán vortex street (here also denoted by shedding mode I).
Furthermore, the shedding period is dependent on the value of the rotation rate. The
quenching of shedding mode II was found to be associated with a kink in the curve for
the mean lift. A complete bifurcation diagram in the Reynolds-number-rotation-rate
plane was provided by Stojković et al. (2003). The range of α where the second mode
appears is only slightly decreasing when increasing the Reynolds number from 60 to
200. At the same time, Mittal & Kumar (2003) performed simulations and stability
analysis for the flow at Re = 200. These authors also identify a second instability
mode at α ≈ 4.5 and find two steady solutions of the nonlinear governing equations
for large rotation rates. Note finally that only numerical studies are mentioned so far.
Experimental measurements were performed by Barnes (2000) at low rotation rates to
determine the value at which shedding is suppressed for Reynolds numbers between
50 and 65. The findings agree with the results of Kang et al. (1999). To the authors’
knowledge, only one experimental work (Yildirim et al. 2008) reports a low-frequency
shedding at large rotation rates. The parameters in Yildirim et al. (2008) analysis
were Re =100 and α = 5.1.

Reynolds number Re = 100 is considered as by Stojković et al. (2002). While the
latter study is based on only direct numerical simulations (DNSs) of shedding modes
I and II, stability and sensitivity analyses of the two modes are also presented here.
In addition, numerical simulations of passive control are performed to validate the
theoretical predictions based on the flow sensitivity. Such a relatively low value
for the Reynolds number is chosen to ensure the existence of two-dimensional
flow; the results obtained for larger values of the Reynolds number do not show
significant differences in terms of instability mechanisms and sensitivity. A recent
computational investigation by El Akoury et al. (2008) indicates that the cylinder
rotation has a stabilizing effect on three-dimensional perturbations acting on shedding
mode I (α � 2.5), increasing thus the Reynolds number for two-dimensional/three-
dimensional transition to values larger than those observed for the flow past a
non-rotating cylinder (Re ≈ 190). On the other hand, the numerical simulations by
Mittal (2004) show the appearance of three-dimensional centrifugal instabilities at
α = 5 and Re = 200. Therefore, the onset of three-dimensional flow past a rotating
circular cylinder deserves further investigations.

2. Problem formulation and numerical method
The two-dimensional flow past a rotating circular cylinder is considered here. As

mentioned above, two parameters completely define the present configuration: the
Reynolds number Re = (U�

∞D�)/ν� and the rotation rate α = ΩD�/2U�
∞ with Ω being

the cylinder angular velocity. The dimensional free-stream velocity U�
∞ and diameter

D� are used as reference velocity and length scales throughout the paper. The fluid
motion, in a domain D, is described by the two-dimensional unsteady incompressible
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Navier–Stokes equations

∂U
∂t

+ U · ∇U = −∇P +
1

Re
�U, (2.1)

∇ · U = 0, (2.2)

where U is the velocity vector with components U = (U, V ) and P is the reduced
pressure. Equations (2.1) and (2.2) are given the following boundary conditions: on
the cylinder surface, the slip and no-penetration conditions are given by U · t =α and
U · n = 0, respectively, where n and t are the normal and tangential versors to the
surface. In the far field, the flow approaches the incoming uniform stream, that is
U → (U∞, 0) as r → ∞, where r is the distance from the cylinder centre.

2.1. Linear stability

The instability onset is studied using linear theory and a normal-mode analysis.
The flow quantities are decomposed in a steady part and a small unsteady
perturbation as u(x, y, t) = Ub(x, y)+ εu(x, y, t) and P (x, y, t) = Pb(x, y)+ εp(x, y, t),
where the amplitude ε is assumed to be small. Because we are interested in two-
dimensional global modes, an ansatz is used such that u(x, y, t) = û(x, y) exp(σ t) and
p(x, y, t) = p̂(x, y) exp(σ t). In the more general case in which one wishes to compute
three-dimensional instability of a possibly time-periodic base flow, perturbations may
be expressed as u(x, y, z, t) = ũ(x, y, t) exp(σ t + γ z) where the homogeneity of the
base flow in the spanwise direction is accounted for by employing Fourier modes of
wavenumber γ and ũ(x, y, t) has the same periodicity of the base flow and imaginary
part of σ is the Floquet exponent. Introducing the flow decomposition and the ansatz
into (2.1) and (2.2) and linearizing, we obtain the linearized unsteady Navier–Stokes
equations

σ û + L{Ub, Re}û + ∇p̂ = 0, (2.3)

∇ · û = 0, (2.4)

where the base flow is the solution of the steady version of (2.1) and (2.2) and

L{Ub, Re}û = Ub · ∇û + û · ∇Ub − 1

Re
�û. (2.5)

On the cylinder surface, a no-slip boundary condition is imposed while in the far field
appropriate radiative boundary conditions should be used (see Giannetti & Luchini
2007). At the outflow, a zero normal stress condition is imposed. At the upstream
boundary, the vorticity is set to zero while the streamwise velocity component is
required to vanish (take the value of one for the Navier–Stokes equations (2.1) and
2.2)) as 1/r , where r is the distance from the cylinder centre. Similarly, on the upper
and lower boundaries, the normal velocity component v is assumed to decay as 1/r

and the vorticity is set to zero.
The system (2.3) and (2.4) gives rise to a generalized eigenvalue problem for the

complex eigenvalue σ . For Re(σ ) < 0, the flow is stable while for Re(σ ) > 0, the
mode is unstable and grows exponentially in time.

2.2. Numerical method

The results presented here are obtained with the numerical code described by
Giannetti & Luchini (2007). A second-order finite-difference approach is used to
compute spatial derivatives of the governing partial differential equations together



Instability of the flow around a rotating circular cylinder 517

with an immersed-boundary technique to represent the cylinder surface on a Cartesian
mesh. The computational domain is rectangular.

With the spatial discretization and boundary conditions described above, three
different problems are addressed. First, the steady nonlinear Navier–Stokes equations
(2.1) and (2.2) are solved by Newton iteration in order to compute the base flow used
for the linear stability analysis. Arclength continuation, as explained by Keller (1977),
is adopted for rotation rates above the onset of the second shedding mode where
multiple steady-state solutions exist; see below. Second, the stability of the flow is
investigated through the eigenvalue problem defined by the linearized perturbation
equations (2.3) and (2.4), where an inverse iteration algorithm is implemented to
compute the least stable eigenvalue and eigenmode (see Giannetti & Luchini 2007 for
further details on the numerical approach). Finally, the nonlinear Navier–Stokes
equations are integrated forward in time with the hybrid Runge–Kutta/Crank–
Nicholson scheme by Rai & Moin (1991) to verify the linear stability results and
identify the main features of the periodic flow arising in unstable configurations.

The main results are obtained with a computational domain of length Lx = 73 and
Ly = 54 in the streamwise x and cross-stream y directions, respectively. The cylinder
is located symmetrically between the upper and lower boundaries, 25 diameters
downstream of the inflow. The Cartesian coordinate system has its origin in the
centre of the cylinder (xc = 0, yc = 0). The resolution used for most of the results is
320 × 240 grid points in x and y. The results are validated by varying both resolution
and domain size. With a higher resolution of 480 × 360, the largest variation in the
magnitude of the unstable eigenvalue is of about 0.8 %. When reducing the box size
to Lx = 64 and Ly = 46, the relative error is of the order of 1.5 % for the largest
rotation rates and much lower (0.2 %) for the lowest angular velocity examined. As
shown by Giannetti & Luchini (2007), an accurate estimate of the unstable eigenmode
is obtained when resolving the region of the wavemaker identified by flow structural
sensitivity in § 4.

3. Characteristics of the base flow and global mode
3.1. Base flow

The flow past a non-rotating cylinder is symmetric and characterized by two
recirculation regions just behind the body (see e.g. Stojković et al. 2002). When
increasing the rotation rate of the cylinder, the lower of these two regions disappears
(for counterclockwise rotation). The upper bubble, instead, detaches from the surface
and becomes smaller (not shown here; cf. Stojković et al. 2002). The stagnation point
moves away from the cylinder surface rotating in the direction opposite to that of
the cylinder rotation. Further increasing the value of α, the upper vortex disappears
and flow is dominated by the rotation of the cylinder. The vorticity of the base flow
for rotation rates α = 1.8 and α = 4.85 is reported in figure 1. These values of α

correspond to the quenching of shedding mode I and to the onset of mode II. The
positive and negative vorticities released in the lower and upper parts of the wake are
deflected upwards at the lower rotation rates considered, while they completely wrap
around the cylinder for the largest α values under investigation.

Figure 2 displays the lift force acting on the rotating cylinder for all rotation rates
considered, α ∈ [0, 7]. In the figure, the stable and unstable solutions are indicated
with dashed and solid lines, respectively, and the potential theory solution is shown
with a dotted line. As noted by Stojković et al. (2002), the behaviour at lower angular
velocities can be fitted by a quadratic relation. However, for values of the rotation
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Figure 1. Vorticity of base flow at rotation rate (a) α = 1.8 and (b) α = 4.85, Re =100.
The white line depicts the evolution of the stagnation points for the steady solutions
reported in figure 2. The markers, starting from the cylinder surface, show the location
for α = 2.5, 4, 4.85, 5.21, 5.17.
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Figure 2. (a) Vertical force on the cylinder vs. rotation rate, Re = 100. Solid line denotes
unstable nonlinear solution, and dashed line denotes stable base flow. The dotted line represents
the potential flow solutions. Note that positive rotation is counterclockwise and negative force
is downwards. (b) Details for the range of α where multiple solutions are found. The filled
square and filled circle show the position of the two turning points.

rates larger than those at which the second shedding mode is observed, the increase
in lift is almost proportional to α and its value approaches the results from potential
theory. On the basis of early experimental work on flow past a rotating cylinder,
Prandtl (1925) argued that the maximum lift that can be generated in a uniform flow
is limited to 4π. The present results, in agreement with those of Mittal & Kumar
(2003), show values of the lift coefficient exceeding the maximum limit based on the
arguments by Prandtl. However, three-dimensional centrifugal instabilities, as well
as endwall and aspect-ratio effects, are expected to limit the lift generated via the
Magnus effect. For a more detailed account on the issue, the reader is referred to
Chew, Cheng & Luo (1995), Mittal & Kumar (2003) and Mittal (2004) and references
therein.

A close look at the region where the second shedding mode is found reveals the
existence of three different steady-state solutions of the governing equations (see
close-up in figure 2). For a given α, the three steady-state solutions are very similar
except for a small region in the vicinity of the stagnation point (therefore they are
not shown here). The base flow obtained at zero rotation cannot be continued for
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Figure 3. (a) Frequency σi and (b) growth rate σr as a function of the rotation rate α. The
filled square and the filled circle correspond to the left and right turning points in figure 2,
respectively.

α > 5.21. The solution presents a turning point when represented in terms of the force
acting on the cylinder. A second turning point is observed at α ≈ 5.17. This location
defines the upper limit at which the second shedding mode is observed and initiates
the stable branch approaching the inviscid solution for increasing rotation rates. The
stability characteristics of the base flows depicted in figure 2 can be better explained
by the bifurcation diagram in terms of the rotation rate. Figure 3 shows both the
frequency σi and growth rate σr of the most unstable modes as a function of the
parameter α. The left and right turning points in figure 2 are given by a filled square
and a filled circle, respectively. To interpret the bifurcation diagram, consider a point
moving along the curve of figure 2 starting from α =5.17, where only one unstable
complex mode exists (note that for the sake of clarity only positive frequencies are
considered here; the spectrum is indeed symmetric with respect to the imaginary axis).
If the rotation rate is increased, the frequency of the complex eigenvalue decreases to
zero. This occurs at α ≈ 5.206, which is before the first turning point. At this α, two
unstable modes appear, both pure real eigenvalues. Continuing along the curve, one
unstable solution becomes stable at the first turning point (filled circle). However, the
second solution is still unstable, which explains why this turning point is not related
to a change in the flow stability. The second solution becomes stable at the second
turning point (filled square); this is therefore the α giving the upper limit at which
the second shedding mode is observed.

The kink observed in previous studies can thus be explained by the appearance
of multiple steady-state solutions of the Navier–Stokes equations at the values of
α where the second shedding mode cannot be seen any longer. The location of the
stagnation point for the steady solutions computed here is presented in figure 1.
The stagnation point is located above the cylinder, slightly downstream of its centre
(xs, ys) = (0.17, 0.9), already for α = 4. However, the second shedding mode appears
only when the stagnation points have moved sufficiently away from the cylinder
surface, at (xs, ys) = (0.24, 1.84) for α = 4.85 and (xs, ys) = (0.11, 2.55) for α = 5.21.
The loop in figure 2(b) is associated with a hook in the location of the stagnation
point. It moves upstream and closer to the surface, (xs, ys) = (−0.025, 2.38) at α = 5.17
above which shedding is not observed. Finally, the stable branch is associated with
a stagnation point almost symmetrically above the cylinder and farther away for
increasing rotation rates.
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Figure 4. Neutral stability curve for the bi-dimensional flow past a rotating cylinder.
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Figure 5. Growth rates Re(σ ) (dashed line) and frequency Im(σ ) (solid line) vs. rotation rate,
Re = 100. The symbols indicate the shedding frequency identified in the nonlinear simulations
of the flow (zero frequency for stable flow). The Strouhal number is related to the frequency
as St = Im(σ )/(2π).

3.2. Stability analysis

Linear stability analysis was performed in order to precisely calculate the neutral
curves for mode I and mode II in a Re–α plane. The results are reported in figure 4
from which we easily observe the existence of two different unstable modes. The
second neutral point (higher α) for shedding mode II was obtained using arclength
continuation. Our results are in agreement with the numerical results of Stojković
et al. (2003) obtained solving the nonlinear Navier–Stokes equations. However, the
linear stability and DNS results only agree in the vicinity of the neutral points, as
also shown by Mittal & Kumar (2003) for Re =200.

The growth rate and frequency of the most unstable modes pertaining to the base
flows presented in the previous section for Re = 100 are displayed in figure 5. In
the plot, the frequency of the limit cycle as obtained from numerical simulations are
also reported with symbols. Positive real part of the eigenvalue, i.e. unstable flows,
is found for 0 � α � 1.8, corresponding to the first shedding mode. The frequency
of the instability is increasing with the rotation rate. However, time integration of
the nonlinear equations reveals that the shedding frequency is decreasing with α,
as observed in previous studies (Mittal & Kumar 2003). Stable flow is found until
α = 4.85 when shedding mode II appears. As shown in the figure, this is characterized
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α DNS LST Stojković et al. (2002) Kang et al. (1999)

0 0.1646 0.1154 0.1650 –
0.5 0.1647 0.1211 0.1657 –
1 0.1656 0.1366 0.1658 0.1654
1.5 0.1634 0.1540 0.1626 –
4.9 0.0294 0.0357 – –
5 0.0226 0.0302 0.022 –
5.1 0.0153 0.0229 – –

Table 1. Values of the Strouhal St = Im(σ )/(2π) as a function of the rotation rate α for
different investigations at Re = 100. DNS and LST denote the direct numerical simulation
and linear stability analysis of the present work, respectively. The results from Stojković et al.
(2002) and Kang et al. (1999) were obtained using DNS.

by frequencies significantly lower than those typical of the instability at low rotation
rates. Numerical simulations confirm the presence of this low-frequency shedding
for values of α where multiple solutions are not observed; cf. figure 2. Simulations
initiated with an impulsive start converge to the stable solution for α > 5.17. At the
same time, solutions initiated with an instantaneous field from an unstable rotation
rate become steady when increasing α above this threshold. Note that in the vicinity
of the critical values of α, the shedding frequency observed in the flow matches that
obtained from the linear stability analysis, an indirect confirmation of the accuracy
of the present results. Values of the Strouhal number St = Im(σ )/(2π) as a function
of the rotation rate α in comparison with other investigations are given in table 1.
The values from both Stojković et al. (2002) and Kang et al. (1999) were obtained
from DNSs. The Strouhal numbers in the columns denoted by DNSs and LST (linear
stability analysis) are from the present investigation. It can be seen that our DNS
results are in good agreement with those of both Stojković et al. (2002) and Kang
et al. (1999).

The first instability mode at rotation rate α =1.8 and α = 4.85 is shown in
figures 6(a) and 6(c), respectively. Shedding mode I is very similar to that observed
for α = 0. The shedding mode is deflected upward when compared with the case of no
rotation while the wake becomes narrower. Shedding mode II is instead associated
with vorticity released from the upper part of the cylinder. Numerical simulations
of the governing nonlinear equations show that the instability occurs as shedding
of only one counterclockwise vortex. Positive vorticity is indeed accumulating close
to the stagnation point during large part of the shedding period (see also Mittal &
Kumar 2003; Stojković et al. 2003).

The left or adjoint eigenvectors for shedding modes I and II are also displayed in
figure 6. The adjoint field represents a sort of Green’s function for the receptivity of
the corresponding global mode. The scalar product of the adjoint eigenmode with
any forcing function and/or initial condition provides the amplitude of the instability
mode (Chomaz 2005; Giannetti & Luchini 2007). Shedding mode I can therefore
be most efficiently triggered in the near wake of the cylinder, closer to the upper
and lower sides and in the recirculation bubble farther downstream. The region of
maximum receptivity for shedding mode II is located close to the body surface, in
the lower and rear part and is stronger than that of mode I. Weak sensitivity to
forcing/initial conditions upstream of the cylinder is also observed.
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Figure 6. First instability mode and its adjoint at rotation rate (a,b) α = 1.8 and (c,d ) α = 4.85 ,
Re = 100. (a,c) The real part of the vorticity of the unstable eigenmode and (b,d ) the magnitude
of the adjoint mode.

4. Structural sensitivity and the wavemaker
In this section, the sensitivity of the unstable shedding mode is used to identify

the core of the instability. The flow around a circular cylinder is often used as a
prototype for globally unstable flows; these behave like hydrodynamic oscillators. In
weakly non-parallel flows, the Wentzel, Kramer, Brillioun, Jeffrey (WKBJ) approach
enables us to identify a specific spatial position in the absolutely unstable region
which acts as a wavemaker, determining for example the oscillation frequency by the
saddle point criterion (Chomaz, Huerre & Redekopp 1991; Dizés et al. 1996; Chomaz
2005). For more complex configurations, strong non-parallel effects prevent us from
using the asymptotic theory and a global analysis is necessary. In this context, a
concept similar to that of wavemaker can be introduced by investigating where in
space a modification in the structure of the problem produces the largest drift of the
eigenvalue: this is done by determining the region where feedback from velocity to
force is most effective. The derivation is briefly outlined here for continuous operators
and further details are given by Giannetti & Luchini (2007).

We start by considering the perturbed eigenvalue problem satisfying the equations

σ ′û′ + L{Ub, Re}û′ + ∇p̂
′ = δH(û′

, p̂
′), (4.1)

∇ · û′ = 0, (4.2)

given homogeneous boundary conditions. The right-hand side δH denotes a linear
differential operator expressing the structural perturbation of the original problem.
In this paper, following Giannetti & Luchini (2007), we will consider structural
perturbation localized in space in the form of a local force proportional to a local
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velocity, i.e. we will assume

δH(û′
, p̂

′) = δM(x, y) · û′ = δ(x − x0, y − y0) δM0 · û′
, (4.3)

where δM0 is a 2 × 2 matrix of the coupling coefficients expressing the particular form
of the localized structural perturbation and δ(x − x0, y − y0) stands for the Kronecker
delta function.

The eigenvalue drift δσ and corresponding variation of the eigenfunctions
δq̂ = {δû, δp̂} with respect to the unperturbed problem can be derived using the
expansion û′ = û + δû and p̂

′ = p̂ + δp̂. If the expansion is inserted into (4.1) and (4.2)
and quadratic terms are dropped, one easily obtains

σδû + L{Ub, Re}δû + ∇δp̂ = −δσ û + δM · û, (4.4)

∇ · δû = 0. (4.5)

In order to derive an expression for the structural sensitivity, we now introduce
the Lagrange identity, as in the work by Giannetti & Luchini (2007). The Lagrange
identity is constructed for any pair of suitably differentiable fields q ≡ {u, p} and
g+ ≡ { f +, m+}, which do not have to satisfy the linearized Navier–Stokes equations
(2.3)–(2.4), using differentiation by parts

[ (
σ û + L{Ub, Re}û + ∇p̂

)
· f̂ + + ∇·û m+

]

+

[
û ·

(
−σ f̂ + + L+{Ub, Re} f̂ + + ∇m+

)
+ p̂ ∇· f̂ +

]
= ∇· J(q̂, ĝ+). (4.6)

In the above equation, J(q̂, ĝ+) is the ‘bilinear concomitant’

J(q̂, ĝ+) = Ub(û · f̂ +) +
1

Re

(
∇ f̂ + · û − ∇û · f̂ +

)
+ m+ û + p̂ f̂ +, (4.7)

and L+ is the adjoint linearized Navier–Stokes operator, which in vector notation can
be expressed as

L+{Ub, Re} f̂ + = Ub · ∇ f̂ + − ∇Ub · f̂ + +
1

Re
� f̂ +. (4.8)

The Lagrange identity is now applied to the perturbation field δq̂(x, y), satisfying

(4.4) and (4.5) and the adjoint field ĝ+(x, y), where ĝ+(x, y) = { f̂
+
, m̂+}. After

integrating over the domain D and accounting for the boundary conditions, we
arrive at

−δσ

∫
D

f̂ + · û dS +

∫
D

f̂ + · δM · û dS =

∮
∂D

J(q̂, ĝ+) · n dl. (4.9)

Here the adjoint perturbation ĝ+(x, y) = { f̂
+
, m̂+} satisfies the following

homogeneous equations

−σ f̂ + + L+{Ub, Re} f̂ + + ∇m+ = 0, (4.10)

∇ · f +
b = 0, (4.11)
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Figure 7. Structural sensitivity for shedding modes I and II at rotation rate (a) α = 1.8 and
(b) α =4.85, Re = 100. Sensitivity with respect to perturbations.

and the boundary conditions are chosen such that the integral on the right-hand side
of (4.9) vanishes. Introducing the sensitivity tensor

S(x0, y0) =
f̂ +(x0, y0) û(x0, y0)∫

D
f̂ + · û dS

, (4.12)

we can express the eigenvalue drift due to the local feedback using (4.9) as

δσ (x0, y0) =

∫
D

f̂ + · δM · û dS∫
D

f̂ + · û dS

=
f̂ + · δM0 · û∫
D

f̂ + · û dS

=S : δM0 =
∑

ij

Sij δM0ij . (4.13)

In the above expression, the notation f̂ + û indicates the dyadic product between the
direct and adjoint modes.

Different norms of the tensor S can be used to build a spatial map of the sensitivity.
The spectral norm is chosen here to study the worst possible case.

The structural sensitivity for shedding modes I and II at rotation rate α = 1.8 and
α = 4.85, Re =100, are shown in figure 7. The core of the instability for shedding
mode I is found to be in two lobes placed asymmetrically in the near wake. One of
the lobes is located across the separation bubble similar to the case of zero rotation
rate (see Giannetti & Luchini 2007). An analysis of the perturbation kinetic energy
production (see the next section) further suggests that the quenching of shedding mode
I is promoted by the weakening of the upper recirculation bubble with increasing
rotation rate α. The wavemaker of shedding mode II is, conversely, wrapped around
the cylinder, following the counterclockwise cylinder rotation.

4.1. Analysis of perturbation energy production

The instability mechanisms are often examined by considering the production of the
perturbation kinetic energy. The basic idea is to derive in the usual way the equation
governing the evolution of the perturbation kinetic energy density EV = 1/2uiui

from the governing linearized equations. Upon integration in the two-dimensional
domain D, the divergence terms in the evolution equation give zero contribution
to the global energy balance when the domain is assumed large enough to have
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Figure 8. Density of the production of perturbation kinetic energy for shedding modes I
and II at rotation rate (a) α = 1.8 and (b) α =4.85, Re = 100.

negligible disturbances at the boundaries. Assuming the normal mode expansion for
the perturbation and averaging in time, the kinetic energy budget can be written as

d

dt

∫
D

(
1

2
uiui

)
dxi =

∫
D

∂Ui

∂xj

τijdxi − 1

Re

∫
D

ωiωidxi, (4.14)

where ( ) indicates time averages, ωi indicates the perturbation vorticity, Ui indicates
the base-flow velocity and τij = − uiuj indicates the Reynolds stresses. The first term
on the right-hand side is the production density, whereas the second term indicates
viscous dissipation (see e.g. Huerre & Rossi 1998).

The total production density (∂Ui/∂xj )τij is displayed in figure 8 for rotation rates
α = 1.8 and α = 4.85. For shedding mode I, production is largest a few diameters
downstream of the cylinder. For this instability, there is noteworthy difference between
the region of largest sensitivity (cf. figure 7) and that of largest disturbance generation.
According to asymptotic theory, this can be explained by the fact that the wavemaker
is located in a region of absolute instability in which the perturbations originate
and propagate as waves in all directions. These waves are, however, most amplified
farther downstream, where the base flow is characterized by the strongest shear. The
perturbation kinetic energy production is almost entirely due to the shear ∂U/∂y;
smaller positive contribution from Tyy = (∂V /∂y)τyy and negative from Txx is also
observed three diameters downstream of the cylinder at the end of the recirculation
region. The total production decreases by about 30 % when increasing the rotation
rate from α =0 owing to the weakening of the shear layers associated with the
separated flow in the wake.

The perturbation kinetic energy production pertaining to shedding mode II is also
presented in figure 8. First, one can note stronger peak values for the production
when compared with the case of shedding mode I. This also implies stronger vorticity
and dissipation. The production is mainly due to the terms Tyx and Tyy , thus due to
variations of the velocity V of the base flow close to the stagnation point. A significant
contribution is also given by the production term associated with ∂U/∂y in the region
close to the upper surface of the cylinder, where flow is moving towards the stagnation
point. When comparing the energy production with the mode sensitivity (figure 7),
good agreement is observed. For this instability, the two approaches pursued here
provide a similar indication. However, if one wishes to influence the instability by
means of a steady forcing, like a small obstacle placed in the flow field, a different
analysis would be necessary. This is presented next.
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5. Structural sensitivity to base-flow modifications
In this section, an expression is derived for the eigenvalue drift δσ due to a

structural perturbation acting at the base-flow level. As in the previous sections,
we will consider a structural perturbation of the steady nonlinear equations in the
form of a local feedback from velocity to force. The perturbed base-flow solution
Qb

′ = (Ub
′, Pb

′) therefore depends on the particular choice of the coupling coefficient
matrix δM which characterizes the given feedback process. Because the eigenvalue
σ is a function of the base flow, the functional relation between the eigenvalue
and δM is easily expressed as σ = σ ( Qb

′(δM)). Recently, Marquet et al. (2008a)
studied the sensitivity of the eigenvalue to structural perturbations of the base-flow
equations using a Lagrange-multiplier technique. They first evaluated the sensitivity
of the eigenvalue to a generic variation of the base flow and then used these results
to determine the effect produced by a steady force, parallel to the local velocity,
acting on the steady base-flow equations. Here, instead, we follow a slightly different
approach based on the Lagrange identity. It is based on the method proposed by
Luchini et al. (2008, 2009) in order to extend the theory of Giannetti & Luchini (2007)
to a periodic base flow. In particular, we assume a general linear feedback acting on
the steady base-flow equations.

The derivation is made in two steps. We start by deriving an expression for the
eigenvalue drift due to an arbitrary variation of the base flow in the linear stability
problem. Second, we demonstrate how to introduce a particular variation of the base
flow caused by the structural perturbation previously discussed.

The perturbed eigenvalue problem this time is given as

σδû + L{Ub, Re}δû + ∇δp̂ = −[δσ û + δC(δUb, û)], (5.1)

∇ · δû = 0, (5.2)

where the bilinear operator δC,

δC(δUb, û) = δUb · ∇û + û · ∇δUb, (5.3)

expresses the variation of L due to a variation of the base flow δUb. We now
apply the same procedure as described in § 4. The Lagrange identity is applied to
the perturbation field δq(x, y, t) = δq̂(x, y) exp(σ t), satisfying (5.1) and (5.2) and the
adjoint field g+(x, y, t) = ĝ+(x, y) exp(−σ t). After integrating over the domain D and
accounting for the boundary conditions, we arrive at

δσ = −

∫
D

f̂ + · δC(δUb, û) dS∫
D

f̂ + · û dS

, (5.4)

which relates the eigenvalue drift to a variation of the base flow and the adjoint
perturbation field which satisfies (4.10) and (4.11). This expression can be expanded
as

δσ =

∫
D

δUb · δC+( f̂ +, û) dS −
∮

∂D
(δUb · f̂ +)û · n dl∫

D
f̂ + · û dS

, (5.5)

where the second integral in the numerator is obtained via integration by parts and
vanishes if the solution decays at infinity. In this expression, the operator δC+, defined
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as

δC+( f̂ +, û) = û · ∇ f̂ + − ∇û · f̂ +, (5.6)

is the adjoint of δC and corresponds to the sensitivity to a generic base-flow
modification as explained by Marquet et al. (2008a). The variation of the base
flow due to the structural perturbation is governed by the linearized steady base-flow
equations

L{Ub, Re}δUb + ∇δPb = δM · Ub, (5.7)

∇ · δUb = 0. (5.8)

Using again the Lagrange identity on the base-flow field δ Qb(x, y) = {δUb, δPb}, which
satisfies (5.7) and (5.8), and on the adjoint field G+

b (x, y) = { f +
b , m+

b }, after integration
by part, we obtain an expression relating to the structural perturbation and the
corresponding variation of the base flow∫

D
δUb · δC+( f̂ +, û) dS = −

∫
D

f +
b · δM · Ub dS +

∮
∂D

J(δ Qb, G+
b ) · n dl, (5.9)

where J(δ Qb, G+
b ) is the ‘bilinear concomitant’ defined in § 4. Here the adjoint base

flow G+
b (x, y) = { f +

b , m+
b } satisfies the following inhomogeneous equations:

L+{Ub, Re} f +
b + ∇m+

b = δC+( f̂ +, û), (5.10)

∇ · f +
b = 0, (5.11)

where the adjoint Navier–Stokes operator L+{Ub, Re} is defined as

L+{Ub, Re} f +
b = Ub · ∇ f +

b − ∇Ub · f +
b +

1

Re
Δ f +

b . (5.12)

The boundary conditions of (5.10) and (5.11) are chosen such that the last integral
on the right-hand side of (5.9) vanishes. Using (5.5) and (5.9), the eigenvalue drift can
finally be expressed as

δσ (x0, y0) =

∫
D

f +
b · δM · Ub dS∫

D
f̂ + · û dS

=
f +

b (x0, y0) · δM0 · Ub(x0, y0)∫
D

f̂ + · û dS

= Sb(x0, y0) : δM0,

(5.13)
where

Sb(x0, y0) =
f +

b (x0, y0) Ub(x0, y0)∫
D

f̂ + · û dS

. (5.14)

Similar to the case of the structural sensitivity to perturbations, when the feedback
forcing is assumed to be localized in space, the sensitivity can be represented by a
spatial map given by the dyadic product in (5.14). The structural sensitivity presented
in § 4 assumes a local force proportional to the local perturbation velocity, that is
a time-periodic forcing with the frequency of the instability mode. Conversely, the
sensitivity considered here assumes a local force proportional to the local base-flow
velocity, that is a steady forcing inducing small base-flow deformations.

The structural sensitivity pertaining to the flow around a cylinder rotating at
α = 1.8 and α = 4.85 is shown in figure 9. For both cases, the sensitivity to base-
flow modifications is significantly stronger than that to perturbations (see figure 7).
The largest sensitivity is attained just below the cylinder, where the velocity at the
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Figure 9. Structural sensitivity for shedding modes I and II at rotation rate (a) α = 1.8 and
(b) α = 4.85, Re = 100. Sensitivity with respect to variations of the base flow.

surface has the same direction of the free stream (the cylinder is rotating in the
counterclockwise direction). The most effective forcing is acting in such a way as to
change the apparent peripheral cylinder velocity and thus change the location of the
flow stagnation point. As shown by the analysis of the base flows, small differences
in its location can have a significant effect on the stability characteristics. In addition,
for mode II, this region in the flow corresponds also to the origin of the positive base-
flow vorticity accumulating just above the cylinder before the shedding. For shedding
mode I, a region of relevant sensitivity associated with the two lobes identified as
instability cores is also shown. This suggests that a steady forcing in the region of
the wavemaker can be effective. In the next section, the operator of the structural
perturbation will be defined so as to reproduce the effect of a small steady cylinder
placed in the vicinity of the rotating cylinder. In this case, the sensitivity of the mode
growth rate and shedding frequency will be considered separately.

6. Application to passive control
We will now use the previous results to develop an effective passive control strategy

for the flow around a rotating cylinder. In principle, several different approaches can
be used to control the flow behind a bluff body. A very simple one was suggested by
Strykowski & Sreenivasan (1990), who introduced a small control cylinder in the wake
of the main one. They noted that by choosing a proper placement of the secondary
cylinder, the vortex shedding was considerably altered and even suppressed altogether
over a limited range of Reynolds numbers. Temporal growth rate measurements of
the velocity fluctuations revealed that the presence of the smaller cylinder reduces the
growth rate of the disturbances leading to vortex shedding and that its suppression,
accompanied by the disappearance of sharp spectral peaks, coincides with negative
temporal growth rates. Here we will adopt the control strategy proposed by Strykowski
& Sreenivasan (1990) to the case of the rotating cylinder and present results for
mode II.

The effects of a small control cylinder on the flow field can be studied in terms of the
structural sensitivity analysis previously set forth. The placement of a small cylinder of
diameter d� in the near wake of a bluff body, in fact, results in a reaction force acting
on the fluid which modifies the flow field and leads to a shift of the eigenvalue σ .
Because the control cylinder is small, its presence can be thought of as a localized
structural perturbation of the governing equations consisting in a localized feedback
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from velocity to force. In the limit of an infinitely small control cylinder placed at
(x0, y0), the local reacting force can be modelled by the first term of the Lamb–Oseen
expansion for the drag of a cylinder in a creeping flow (see e.g. Pozrikidis 1996; Dyke
1975). With our non-dimensionalization, the expression for the reacting force becomes

F(x, y) ≈ −δA δ(x − x0, y − y0) U(x, y), (6.1)

where the real coefficient δA is given by the following formula

δA =
4π

Re ln

(
7.4

Rec

) . (6.2)

Note that δA depends on the usual Reynolds number of the flow under investigation
and on the Reynolds number of the small control cylinder Rec = U�d�/ν� which is
based on its diameter and on the local velocity U(x0, y0). As expected, δA → 0 as
Rec → 0 (i.e. d� → 0) so that, in this limit, the effects of the reacting force can
be investigated through the linear structural perturbation analysis developed in the
previous sections. Equation (6.1) represents a force of pure resistance, i.e. a force
whose direction is locally aligned with the local velocity vector. This means that the
local feedback matrix δM0 corresponding to (6.1) is diagonal with elements of equal
magnitude δA, i.e. δM0 = δA I (with I being the identity 2 × 2 matrix). The structural
perturbation acts both at the perturbation level by modifying in a direct way the
structure of the eigenvalue problem and at the base-flow level by perturbing the steady
base flow, which in turn determines the coefficients of the linearized Navier–Stokes
operator. In order to build a spatial map which can be used as a guideline for a
control strategy, both effects must be taken into consideration. Therefore, given the
particular form of the structural perturbation, we can write the total eigenvalue drift
δσt as the sum of the two contributions

δσt = δσb + δσ = Sb : δM0 + S : δM0 = St : δM0, (6.3)

where the total sensitivity is defined as

St = S + Sb. (6.4)

It is important to note that by inspecting the real and imaginary part of (6.3), it is
possible to uncover the effect of the structural perturbation on the growth rate and
the frequency of the unstable mode, respectively.

This formula is valid only for an infinitesimal perturbation, i.e. for infinitesimal
small control cylinders. Marquet et al. (2008a) used a different formula numerically
calibrated to model the effect of a small but finite cylinder. With such formula and
accounting only for the sensitivity to the base-flow modification, they obtained good
agreement with the experimental results of Strykowski & Sreenivasan (1990). Here,
we prefer to build the sensitivity map for an infinitely small control cylinder with
(6.3) and use it only as a guide to place a control device of small but finite radius in
the flow field. The real effects of such positioning will be then checked by running
a full DNS for the flow over the two cylinders. This will enable us to compare
the results with our sensitivity map and to check that no other stable modes are
destabilized by the present control strategy. This is an essential point: indeed for the
success of any control strategy, the sensitivity of the dominant stable modes should
also be examined. However, given the level of approximation used to represent the
secondary cylinder, we think it is more convenient to directly perform the DNS, which
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Figure 10. Structural sensitivity for shedding mode I at rotation rate α = 1.8. (a) Real
part with negative value indicating quenching and (b) imaginary part with negative value
indicating lowering of the shedding frequency. From top to bottom, sensitivity with respect to
perturbations δσ , to variations of the base flow δσb and total sensitivity δσt .

also includes nonlinear effects neglected in the sensitivity analysis. This will therefore
provide a good validation of the theoretical model.

6.1. Sensitivity map for the shedding modes

In figures 10 and 11, the variations δσ , δσb and δσt (from top to bottom) are shown
for a structural perturbation of amplitude δA = 1 for shedding mode I (Re = 100,
α = 1.8) and II (Re = 100, α = 5.0), respectively. In principle, keeping δA constant for
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Figure 11. Structural sensitivity for shedding mode II at rotation rate α = 5. (a) Real
part with negative value indicating quenching and (b) imaginary part with negative value
indicating lowering of the shedding frequency. From top to bottom, sensitivity with respect to
perturbations δσ , to variations of the base flow δσb and total sensitivity δσt .

different positions of the control cylinder implies considering different diameters d∗.
However, in the range of validity of our sensitivity analysis (d∗ → 0), the dependence
of the amplitude on the local Reynolds number can be considered a second-order
effect. The variation, of each quantity, with respect to the growth rate is shown in
figure 10(a), where a negative value indicates quenching. Figure 10(b), instead, shows
the variation with respect to the shedding frequency with dark areas corresponding to
lowering. In both cases, variations due to base-flow modifications are larger than the
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contributions produced by the unsteady components. The results for shedding mode
I indicate that there are three main regions (a tiny one close to the top leeward wall
and the other two extending downstream and slightly tilted in the rotation direction)
in which we can expect a substantial decrease of the unperturbed growth rate. These
figures are qualitatively similar to those obtained by Marquet et al. (2008a), where
the non-rotating case was analysed for different Reynolds numbers. Note that in
order to validate our approach, the sensitivity analysis was also performed at α = 0
and Re = 46.7, and the results (not shown here) precisely recover those obtained by
Marquet et al. (2008a). As other studies have shown, e.g. Mittal & Kumar (2003),
a small rotation rate (α � 2) does not alter substantially the mechanism behind the
instability; this is also confirmed by our analysis which shows qualitative resemblance
of the sensitivity maps for low and zero rotation rates. For higher rotation rates,
instead, the qualitative pictures dramatically change, reflecting the appearance of
mode II. The total sensitivity, and consequently the total eigenvalue drift, is now
much larger than that for low rotation rates. This is mainly due to a larger sensitivity
to base-flow modifications. Also, the spatial distribution is now rather different than
that for mode I. The largest drift in the growth rate is now obtained in a narrow moon-
shaped region close to the surface located on the opposite side with respect to the
stagnation point. Moving away from the wall in a radial direction, we first encounter
a region of strong quenching, and subsequently a narrow strip of destabilization. The
magnitude of δσt in these areas is attenuated in the rotation direction. Farther away,
the eigenvalue drift decays rapidly. The same behaviour is observed for the frequency
drift.

6.2. Passive control for mode II

We can now use the map of the eigenvalue drift as a guideline to insert the small
control cylinder in the flow in the attempt to suppress the vortex shedding. Here
we will do this for mode II, but a similar approach can be used to control mode I,
as suggested and implemented by Marquet et al. (2008a). In order to suppress the
instability, we need to produce a variation of the eigenvalue large enough to obtain a
negative growth rate. The success of such operation will depend on how large the real
part of the eigenvalue of the unperturbed base flow is, on its sensitivity to structural
perturbation and on the size of the control cylinder, which as previously discussed
can have a significant impact. For mode II, the region of instability is rather narrow
and the growth rates do not reach very large values. Also, the sensitivity analysis
shows that the growth rate drift produced by a local force aligned with the velocity is
quite large so that we should be able to control the vortex shedding even with a small
cylinder, provided it is properly positioned. To show this, we decided to locate a control
cylinder, with diameter d� =D�/10, in three different positions. DNS of the flow past
the system including the passive control cylinder was performed starting from a
uniform stream. The small cylinder was treated with the same immersed-boundary
technique previously presented. A grid refinement test was conducted showing that at
least 20 points along the small-cylinder diameter are necessary to sufficiently represent
the flow. The simulation was run until either a steady-state or a time-periodic solution
was obtained.

In the first two cases, as shown in figures 12 and 13, the control cylinder was located
in regions where according to our analysis we should expect a substantial decrease
of the growth rate. The time trace of velocity reveals that in both cases the vortex
shedding is completely suppressed. Note that in the first case the control cylinder is
not positioned in the region of largest sensitivity; however, the effect was sufficient
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Figure 12. Control of vortex shedding, case 1. (a) Position of the control cylinder with respect
to the variation of the growth rate. Dark colours indicate quenching and light colours indicate
an increase. The area delimited by the solid contour is associated with δσt � 1.5, while the
area inside the dashed-dotted line contour is associated with δσt � −1.5. (b) Time trace of the
streamwise velocity component at the point xp =17, yp = 2 downstream of the main cylinder.
The Strouhal number for the case without the control St =0.0226.
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Figure 13. Control of vortex shedding, case 1. (a) Position of the control cylinder with respect
to the variation of the growth rate. Dark colours indicate quenching and light colours indicate
an increase. The area delimited by the solid contour is associated with δσt � 1.5, while the
area inside the dashed-dotted line contour is associated with δσt � −1.5. (b) Time trace of the
streamwise velocity component at the point xp =17, yp = 2 downstream of the main cylinder.
The Strouhal number for the case without the control St =0.0226.

to successfully control the instability. In addition, the transient regime to the steady
state is also shorter than that in the case when the control cylinder is placed in the
region of strongest sensitivity (figure 13).

Finally, in order to confirm the sensitivity map, a third test case, shown in figure 14,
was examined. The control cylinder was placed in an area where an increase of the
growth rate and a decrease of the shedding frequency are expected. In this case, the
flow reached a periodic state with a lower frequency with respect to the unperturbed
case. This is in agreement with the results of figure 11.

7. Conclusions
The linear instability of the flow around a rotating circular cylinder is studied at

Re =100. Structural sensitivity (Giannetti & Luchini 2007) and perturbation kinetic
energy budget are considered to examine the relevant physical mechanisms for the
instability. The main conclusions can be summarized as follows.
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Figure 14. Control of vortex shedding, case 2. (a) Position of the control cylinder with respect
to the variation of the growth rate. Dark colours indicate quenching and light colours indicate
an increase. The area delimited by the solid contour is associated with δσt � 1.5, while the
area inside the dashed-dotted line contour is associated with δσt � −1.5. (b) Time trace of
the streamwise velocity component at the point xp = 17, yp = 2 downstream of the main
cylinder. The Strouhal numbers for the cases with and without the control are St = 0.0141
and St = 0.0226, respectively.

The von Kármán vortex street disappears when the rotation rate of the cylinder
increases to α ≈ 2. This is due to the weakening of the shear layers associated with
flow in the wake. For this instability mode, the structural sensitivity identifies the
wavemaker in the excitation of the global oscillations in the near wake region, while
the largest production is observed farther downstream in the regions of strongest
cross-stream shear. This difference motivates the need for different approaches to the
global stability problem.

A second shedding mode is observed in the range 4.85 � α � 5.17, characterized
by the shedding of one counterclockwise vortex from the upper part of the cylinder.
The core of the instability is identified in the advection of the positive vorticity of
the base flow from the low–rear part of the cylinder to the stagnation point where it
accumulates and is then shed.

Multiple solutions are found at high rotation rates. Following the unstable branch,
a first turning point in phase space is observed. For a limited range of α, two unstable
branches are thus found. The location of a second turning point determines the
rotation rate at which shedding mode II is last observed. In fact, this point defines
the birth of a branch with stable steady-state solutions, which continues at larger α.
An analysis of these multiple steady states is presented for the first time. Turning
points are associated with the movement of the flow stagnation point. This is, in turn,
associated with the instability. Increasing the cylinder angular velocity, the stagnation
point moves away from the cylinder rotating in the opposite direction. Shedding
mode II is observed when this is sufficiently far from the cylinder, so that positive
vorticity can accumulate there, as well as downstream of the cylinder centre. The
instability disappears once the point moves back upstream, while reaching farther
out for very high rotation rates approaching the potential flow solution. The flow
therefore transitions from an unstable regime where viscous effects are important to
a stable configuration where rotation dominates. In this case, vorticity is not diffused
sufficiently far from the cylinder surface in the stagnation region and the flow is again
stable.

A method to examine which structural variation of the base flow has the largest
impact on the instability features is proposed. This involves the product of the direct
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and adjoint modes weighted by the Jacobian of the linear stability system and of
the steady Navier–Stokes equations subject to a steady structural perturbation. The
method proposed has relevant implications for the control of instabilities. When
applied to the flow past a rotating cylinder, it provides for example indication on
the way to control the vortex shedding by placing an obstacle in the flow, as in the
experimental work by Strykowski & Sreenivasan (1990). Numerical simulations of
passive control by means of a small non-rotating cylinder are performed to validate
the theoretical model adopted. A secondary cylinder is placed close to the main
rotating cylinder as suggested by the sensitivity map computed above. Quenching of
shedding mode II and variations of the shedding frequency are found in agreement
with the theoretical predictions.

Finally, a comment on the question of three-dimensional effects is in order. The
Reynolds number pertaining to the computations presented here is chosen to be large
enough for the first bifurcation to occur (Re > 47) but lower than that when three-
dimensional breakdown of the two-dimensional shedding is observed for the non-
rotating cylinder (Re ≈ 190). For rotating cylinders, the investigation by El Akoury
et al. (2008) indicates that the cylinder rotation has a stabilizing effect on three-
dimensional perturbations acting on shedding mode I (α � 2.5), increasing thus the
Reynolds number for two-dimensional/three-dimensional transition to values larger
than those observed for the flow past a non-rotating cylinder. However, when further
increasing the rotation speed, the stagnation point moves away from the surface
of the cylinder, and closed streamlines will form, separating the flow in internal
and external to it. Within the internal flow, one can expect that the large pressure
differences will induce three-dimensional centrifugal instabilities similar to that in
Taylor–Couette flow. Indeed, the numerical simulations by Mittal (2004) of the flow
past a cylinder of finite spanwise length show the appearance of three-dimensional
centrifugal instabilities at α = 5 and Re = 200. Further investigations are therefore
needed on the onset of three-dimensional flow past a rotating circular cylinder.
Floquet analysis needs to be performed when considering the instability of time-
periodic base flows; extension of the structural sensitivity concept for this case is
presented by Luchini et al. (2008, 2009). Recent experimental work by Yildirim et al.
(2008) reports low-frequency shedding at Re = 100 and α = 5.1.
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Stojković, D., Breuer, M. & Durst, F. 2002 Effect of high rotation rates on the laminar flow
around a circular cylinder. Phys. Fluids 14 (9), 3160–3178.
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